Bootstrapping Clustered Data in R using lmeresampler
نویسندگان
چکیده
Linear mixed-effects models are commonly used to analyze clustered data structures. There numerous packages fit these in R and conduct likelihood-based inference. The implementation of resampling-based procedures for inference more limited. In this paper, we introduce the lmeresampler package bootstrapping nested linear via lme4 or nlme. Bootstrap estimation allows bias correction, adjusted standard errors confidence intervals small samples sizes when distributional assumptions break down. We will also illustrate how bootstrap resampling can be diagnose model class. addition, makes it easy construct interval estimates functions parameters.
منابع مشابه
Bootstrapping clustered data
Various bootstraps have been proposed for bootstrapping clustered data from one-way arrays. The simulation results in the literature suggest that some of these methods work quite well in practice; the theoretical results are limited and more mixed in their conclusions. For example, McCullagh reached negative conclusions about the use of non-parametric bootstraps for one-way arrays. The purpose ...
متن کاملData Mining in R using Rattle
This paper is a brief introduction to the concepts, methods and algorithms for data mining in statistical software R using a package named Rattle. Rattle provides a good graphical environment to perform some of the procedures and algorithms without the need for programming. Some parts of the package will be explained by a number of examples. ...
متن کاملpattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اولNonparametric Bootstrapping for Multiple Logistic Regression Model Using R
The use of explanatory variables or covariates in a regression model is an important way to represent heterogeneity in a population. Again bootstrapping is rapidly becoming a popular tool to apply in a broad range of standard applications including multiple regression. The nonparametric bootstrap allows us to estimate the sampling distribution of a statistic empirically without making assumptio...
متن کاملBootstrapping POS-taggers using unlabelled data
This paper investigates booststrapping part-ofspeech taggers using co-training, in which two taggers are iteratively re-trained on each other’s output. Since the output of the taggers is noisy, there is a question of which newly labelled examples to add to the training set. We investigate selecting examples by directly maximising tagger agreement on unlabelled data, a method which has been theo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: R Journal
سال: 2023
ISSN: ['2073-4859']
DOI: https://doi.org/10.32614/rj-2023-015